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ABSTRACT

The bounds of Soms (1977) for the tail area of the t-distribution with

integral degrees of freedom are extended to arbitrary positive degrees of

freedom. Three numerical examples are provided.
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r
SIGNIFICANCE AND EXPLANATION

Real degrees of freedom arise in the modification of the iwo-sample

t-test when the variances cannot be assumed to be equal. For small degrees

of freedom both linear interpolation and standard computer routines may be

unsatisfactory. The present paper provides a simple technique for satis-

factory estimates of tail probabilities.

The responsibility for the wording and views expressed in this deicriptivi,
summary lies with MRC, and not with the author of this rt.port.
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A NOTE ON AN EXTENSION OF RATIONAL BOUNDS FOR
THE t-TAIL AREA TO ARBITRARY DEGREES OF FREEDOM

Andrew P. Soms

1. Introduction and Statement of Extension

In applcations, such as the Welch modification of the two-

sample t-test when variances cannot be assumed to be equal, it is

sometimes desired to evaluate the t-tail area for nonintegral

degrees of freedom. It is therefore of practical interest to

extend the results of Soms (1977) to arbitrary real degrees of

freedom. While one could use the relationship between the t and

beta distributions indicated in Section 3, this would consume

substantially more computer time because of the numerical inte-

gration and would introduce errors if either limit of integration

was close to 0 or 1. We introduce notation and state the result

in this Section, indicate the proofs in 2, and give some numerical

examples in 3.

For arbitrary real k>0, let

fk(t) ck(l+t2/k) -(k+l)/2 Ck r((k+l)/2)
r(k/2) (wk)

Sk(x) l-Fk(X) kf(t)dt

and R F k(x)/[(l+x /k)fk(x)]

Also, for k>2, let ya 4c /(- 4cmin 2 ) 2 y k

and for k<2, interchange the definitions of ymax and ymin* Then

we have the following extension of Theorems 2.1 and 2.2 of

Soms (1977).

Theorem 1.1: Let p(xy) I+y Then2 2 2 " he
(x 2+4ck(l)+) 2+yx
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p(xYmin) < R < p(x,y) (1.1)

or, equivalently,

2
(l )fk(x)p(x,Yn) < Fk(X) < () (1.2)

m k fk(x) p (XYmax

This is a generalization of Soms (1977) where (1.1), or equivalently

(1.2), was shown to hold for integral k. It was also shown there

that if k=2, ymax = Ymin w Y2 and Rx  p(x,y2 ), and hence this

case need not be considered further.

2. An Outline of the Proofs

We first note that the asymptotic expansion given in Soms

(1976) for the tail area of the t-distribution is valid for arbi-

trary k>O even though it was stated for k a positive integer,

because this fact was not used in the derivation. Hence the

heuristic derivation of (1.1) remains exactly as before. To

insure that the proof of Theorem 1.1 given for the integral case

works for k real, all that needs to be verified is that the ck

satisfy the lemmas in the Appendix and the relationships cf

Theorems 2.1 and 2.2 of Soms (1977). We state these lemmas and

relationships and indicate their proofs.

Lemma 2.1: For real k>O, the €k form an increasing sequence with

limit I/(27)"

Proof: That the limit is l/(2T) is shown by using Stirling's

formula. To obtain the result it suffices to show that
d n ck

dk - g(k) > 0 for all k>O. By differentiation,

g(k) 1 (k-- ) - ( ) - "' '
2''2~ 2 2 2k'

where "(x) is the digamma function (see, e.g., Abramowitz and

Stegun, 1965, p. 258). From Artin (1964, p. 17),

______-2-



h(k) k +- ) - i1() - (k+2i)(k+21)

2 2 2 ia (

Let f(x) ((k+2x)(k+2x+l)) -. Then it can be shown by differen-

tiation that f is convex and by considering the area under f(x)

from 0 to n and letting n-* it follows that
I1

of(x)dx + f(0) < h(k)

or

1 k+l 1 1

n -k + 2 k(k+l) - h(k)

since 12 dt in k+2t The above is a special2 k+2tlsic (k+2t) (k+t) 2t= £ k+2t+l'

case of the Euler-Maclaurin summation formula and was shown to

the author by Harris (1978), Therefore it suffices to show that

k+l 1 1
k k(k+l) k 10

k~l 1

or, since in in(k+l) - in k > that

1 + 1 >
k+l k(k+1) - k

which is true for all k>O, concluding the proof.

2Lemma 2.2: For k>0, 1-4c > 0
k

Proof: Follows from Lemma 2.1.

Lemma 2.3: For k>2, 8c 2 -1 > 0 and for k<2, 8c2  1 < 0.
k k

Proof: Follows from Lemma 2.1 and the observation that 8c - 1 0.
2

Lemma 2.4: For k>2, c2 < k/(6k+4) and for k<2, ck2 > k/(6k+4).

Proof: Let h(k) - Zn(k/6k+4)) - in ck . Then lim h(k) - 0,
k-0

h(2) - 0 and it must be shown that h(k) < 0, 0 <k <2 and h(k) >0,

k>2. By differentiation and the recursion formula for the Y

function (see, e.g. Abramowitz and Stegun, p. 258),

'V(x+l) = T'(x) + l/x,

-3-



3k+l I (w.k+l
h'(k) - 2(3k+2)(k+l) 2 W (2 + 1) - (h + 1))

By differentiation, it follows that for k < (2 -1)/3 .138,
f (k) - 3k+1

2(3k+2)(k+l) is an increasing function and for k > .138

decreasing. Also, from Artin (1964, p. 17) it follows that

g(k) = - ('(--- + 1) - T( + 1)) is both a positive and decreas-
2 2 2

ing function of k. Hence, for k such that kL <k<kR_5 .138,

h'(k) < f(kR) - g(kR) , (2.1)

and for k such that .138 <k L <k k R

h' (k) > f(k R) - g(k L ) . (2.2)

Also, since c k and d k  (k/(6k+4))k are both increasing functions

of k, for k such that kL <k< ,

dd - c k . • (2.3)

kL kR - k kR kL

Using (2.1), (2.2), and (2.3), it follows that h'(k) < 0,

.0-.1(.05), h(k) < 0, .1-.3(.01), .3-1.1(.05), and h'(k) > 0,

1.1-14.2(.1). From Lemma 2.1, h(k) > 0 if (k/(6k+4)) > (1/2T1)

or k > 14.2. Combining the above results gives the conclusion.

To complete the extension it is necessary to prove the three

following lemmas used in Soms (1977).

Lemma 2.5: For k>2, c2 < k/(4k+8), and for k<2, c2 > k/(4k+8).
k k

Proof: For k>2, k/(4k+8) > k/(6k+4) and for k<2, k/(4k+8) <

k/(6k+4), and so using Lemma 2.4, the result follows.
4 2 •kador<2164+

Lemma 2.6: For k>2, l6 kc4 + (4 k+ 4 )c2 > k and for k<2, l6kck +

(4k+4)c 2 < k.

Proof: By some algebra, Lemma 2.6 is equivalent to

-4-



Ck >j k (I +(+ <> 2. By using the recur-

sion formula for the r function this is further equivalent to

r k+l+
h =' 2 ...... l l~~ 2 +1

1(' k+l 2 k< 2+ 2(k) = ( -k ) + for k <> 2.hl~k) k-+'-i (+ I

Let g(k) = Zn h k) -Zn h 2 (k). Then lim g(k) - g(2) = 0 and we
k- 0

must show that g(k) <0, O< k< 2, and g(k) >0, k >2. By differen-

tiation,

'(k) - - + k--+ +1)-T( +1 + 4k x
k+1(k+l) 3

+(2k ) ( +(2k 2 -1
k+1 k+1 J

1 + g (k) +g(k)
k+l 1 g2( "

Now g' (k) < k1 + g1 (k) + 2k and for k such that k < k < k R

+ --

g' (k) < - + g (k) + 2k. Also, since for k > 1, g(k) is a
k +1. 1L R' g2

decreasing function of k, we have g'(k) > L + gl(k)+g2(k

for l<k Lk<k . Hence g'(k) <0, .0-.15(.01), g(k) <0,

.15-.25(.001) and .25-1.60(.01), g'(k) >0, l.-3.4(.1), g(k) >0,

3.4-5.0(.01) and 5.0-17(.1) and since 16k ck + (4k+ 4 )c2 >k 2
c4  c 2 = k(l 6 c + 4 c ) and 16c 1 7 + 4c1 7  , g(k) > 0,

16k k + 4k 1k 1

k > 17. Combining the above yields the result.
2 (k (k4)_2 -(k) (k+4)

Lemma 2.7: For k>2, c > and for k<2 2 < k
k 8(k+l)(k+2) ck 8(k+l) (k+2)

Proof: By using the recursion formula for the r function, it is

equivalent to show

r 2 (k+l 1

h (k) 2  + ) > hk (k+l)(k+4)
1 r + 1) < 2 8(k+2) k

Let g(k) =n h1 (k) - tn h,(k). Then lir g(k) = 0 and g(2) - 0.
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k+l1 ]
By differentiation, g' (k) = -+ 1 1) + k+2 k+

g1 (k) - g2 (k). Since g1 and g are decreabing functions of k and

a(k) = (k)(k+4)/(8(k+l)(k+2)) is increasing for k < (12) +2 L 5.46

we have for k such that kL < k < kR,

c2 - a(k) < c2 - a~kL), k < 5.46

and R L(2.4)
and

91(k) R- g2 (kL) < p2(k) gI(kL) - g 2 (kR.

Using (2.4), we have g' (k) < 0, .0-.45(.05), g(k) < 0, .45-1.15(.01),

g'(k) > U, 1.15-9.05(.01) and g(k) > 0 for k > 9 since

C 2 (k)(k+4) i 2 > k+4 and the latter is true for k = 9.Ck 8 8(k+1))(k+2 fc k  8 (k+ 2)

Combining the above concludes the proof.

All the calculations invol'ed in the proofs were done on a

computer using I and T routines.

3. Some Numerical Examples

Suppose k =.2 and x = 4. Then using Theorem 1.1, we find that

c2 = .19748, y .16557, p(4,ym) = .24859, i = .18482,
,2mxmax min

p( ) = .24857 and .28468 < F (4) < .28471. The value fivfn

2.by a o.omputer routine using the relationship 'k kt) -- .5

5 1 (i/2,k/2), x = t2 /k/(l+t /k), is .28471. If k 2.5 and \x

then c = .361609, y a 1.099178, p(2, f ) = .44570-
5Max ra x

min 1.121967, p(2,ymi n  = .445287 and .0768 < F 2 .5 (2) <..

The computer value is .07870. Finally, if k =.l, x -: 25, the,

.14809, .08564? p(25,,.'a ) = .039997 y = ( "O611
I ~ max ' max ~min

p(25,y = .039997 and .30251 < F. (25) < .30251. The corput.r

value is .30251. Th, above statements of course reflect roundini.

These namerical examples Indicate that Theorem 1.1 wculj I.e

well suited to a small sample Monte Carlo stud'.' of tha Welch t-test.

I __ _ _ _ _ _ _
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